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HYDRODYNAMIC AND NUMERICAL MODELING
OF A SPHERICAL HOMOGENEOUS DYNAMO
EXPERIMENT

C.B. Forest, R.A. Bayliss. R.D. Kendrick. M.D. Nornberg.
R. O'Connell. E.J. Spence
Department of Physics, University of Wisconsin, Madison, Wisconsin 53711, USA

A spherical, homogeneous kinematic dynamo is investigated both experimentally and
theoretically at the University of Wisconsin. Previous kinematic dynamo studies are
extended by optimizations in flow geormnectries which lower the critical magnetic Reynolds
number for self-excitation. The stretch-twist-fold dynamo model is used to describe
the physical mechanism for magnetic field generation in a simple two-vortex flow. The
possibility of producing such flows in liquid sodium is studied in a water experiment.
Mechanically driven flows generated by rotating impellers enclosed in a spherical vessel
are characterized by measurements of the velocity field using Laser Doppler Velocimetry.
The mean flows studied are predicted to lead to self-excitation of magnetic eigenmodes.
The sodium dynamo experiment is described.

Introduction. The question of how magnetic fields are generated by flows
in conducting fluids is referred to as the “dvnamo” problem. Theoretical research
into dynamo mechanisms has been actively pursued for several decades. Until quite
recently, however, probing of the dynamo problem has been limited to analytic
calculations. numerical models, and observational studies; experiments, the critical
tests of dynamo theory, have been scarce.

Two important questions to be addressed by dynamo theories and experiments
are: (1) what class of flow geometries and velocity fields (presumably turbulent)
lead to self-excitation of magnetic fields? (2) how does a self-generated magnetic
field affect the velocity field and bring about saturation of an otherwise growing
magnetic field?

In answering the first question, one looks for solutions to the magnetic in-
duction equation in which the magnetic field is growing. The magnetic induction
equation is derived from Faraday's law and the equation describing the generation
of current by motion of a conductor across a magnetic field. It is given by

213=V><(V><13)+—1—VQB. (1)

ot o
where B is the magnetic field, V is the velocity field, and ¢ is the conductivity of
the fluid. The validity of the induction equation is not in doubt: it has been tested
repeatedly in the context of plasmna physics. The untested part of the kinematic
dynamo problem concerns the geowmetry of the flow. Dynamos require a flow
geometry in which the current generated by the fluid flow across a seed magnetic
field produces a new magnetic field that amplifies and reinforces the original seed
field. The goal is to determine the boundary conditions and flow topologies which
produce dynamos. We restrict our search to flows in a simply connected tontainer,
unconstrained by baffles, in which the medium is electrically homogeneous [1].
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The second question is a study of the non-linear coupling of the induction
equation (1) to the equation of motion governing the fluid velocity:

ov
p(—a?+V-VV>:JxB+puV2V—Vp, (2)

where v is the viscosity and p is the pressure. As a self-generated magnetic field
grows, the relative strength of the Lorentz force increases, changes the velocity
field, and ultimately alters the growth rate of the magnetic field. Energy conser-
vation defines a saturation limit where the applied mechanical energy is balanced
by dissipation, though a number of other saturation mechanisms may occur. For
instance, the mechanical driving force may balance the Lorentz force, the Lorentz
force may distort the mean velocity field, or turbulence in the velocity field may
cause a small scale back reaction.

There is evidence of some experimental progress in identifying flow geome-
tries which lead to dynamo action. Notably, Lowes and Wilkinson constructed
an electrically homogeneous kinematic dynamo (based on a theorem by Herzen-
berg) by embedding two rotating, conducting spheres in a larger conducting block
(2, 3. 4]. The successful dynamo experiments in Karlsruhe and Riga show that
new flow topologies are made possible by using liquid metal rather than solid con-
ductors. Both of these experiments demonstrate kinematic dynamo action using
helical flows of liquid sodium which cannot be realized by rotating solid conduc-
tors [5, 6]. Pipes and helical baffles constrain these flows by separating the sodium
into a number of different regions, so although these experiments could be consid-
ered electrically homogeneous, they are not mechanically homogeneous and do not
address the large scale back-reaction of the self-generated magnetic field on the
flow. No experiments yet demonstrate dynamo action in which the velocity field
is unconstrained by pipes and baflles on the scale the magnetic field is generated.

The goal of the Madison Dynamo Experiment is to construct an electrically
and mechanically homogeneous dynamo in which the geometry is simply con-
nected, the fluid is surrounded by a vacuum region, and for which the flow is
driven but free to respond to Lorentz forces induced by the generated magnetic
fields [1] 1. The Madison Dynamo Experiment consists of a 1 m diameter, station-
ary spherical vessel filled with liquid sodium with 150 kW of mechz.aical energy
input from impellers. The spherical geometry is motivated in part by theoretical
kinematic dynamo studies which show that simple axisymmetric flows can gen-
erate self-excited magnetic eigenmodes [9, 10, 11, 12]. An example is shown in
Fig. 1. Like the experiments at Karsruhe and Riga, this flow has strong helic-
ity but is generated without the constraints of pipes. Previous studies indicate
that for the proper flow geometry, a magnetic eigenmode can grow provided the
magnetic Reynolds number

Rm = pgacly (3)

exceeds a critical value Rm. . Here a is a scale length taken to be the radius for
spherical geometry, ¢ is the fluid conductivity (107 mho/m for liquid sodium), and
Vo is the peak speed of the mean flow. The required value of Rim.depends upon
the details of the velocity field. Target velocity fields with low values of Rm, are
more easily achieved in an experiment since the required inventory of liquid sodium
and required fluid speed are smaller.

1Gimilar experiments are being performed at the CNRS, Caderache (7] and at the University
of Maryland [8].
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This paper documents progress towards constructing the Madison Dynamo
Experiment. The first section presents results of a numerical optimization study
of w?-dynamo systems which has identified velocity fields in a sphere which self-
excite for values of Rin considerably lower than previously reported. These results
provide target flows for experiments. The dynamo produced by one of the flow
profiles is described in terms of the stretch-twist-fold process in Section 1.3. The
possibility of generating the target flows is addressed in Section 2 which describes
hydrodynamic experiments that demonstrate that velocity fields can be produced
which are predicted to be kinematic dynamos with low values of Rm. . Section 3
describes the sodium dynamo experiment.

1. Optimizing axisymmetric flows for spherical kinematic dynamos.
Numerical techniques are generally required for solving the magnetic induction
equation,

1
6(9—]? =V x{VxB)+ T

where the equation is now in dimensionless form. Once the velocity field and
boundary conditions are specified, the evolution of the magnetic field can be de-
termined. We choose to work in a spherical geometry since it applies to natural
phenomena, it leads naturally to a classification of possible flow topologies, and a
great deal of work has has already been done in searching for dynamo solutions in
spherical systems [9, 10, 11, 13].

1.1. Numerical formulation of the kinematic dynamo in a sphere. In solving
the kinematic dynamo problem, one searches for velocity fields which are linearly
unstable to magnetic perturbations and thereby generate exponentially growing
magnetic fields B o e*. Assuming this exponential time dependence, separation
of variables in (4) leads to a linear eigenvalue equation for A:

V°B, (4)

AB =RmV x (V x B) + V?B, (5)

where the equation is recast in terms of normalized variables and the characteristic
resistive diffusion time 7, = pooa?. The solution to (5) consists of a series of
discrete eigenmodes

B= Z B:(x) exp(Mit), (6)

each characterized by complex frequencies A;. The kinematic dynamo problem is
primarily concerned with finding the least damped, or fastest growing, eigenmode
B;(x). If Re();) > 0 the system is a dynamo.
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Exploiting the divergence-free nature of both the magnetic field and velocity
field (assuming the fluid is incompressible), a vector potential is defined for both
the velocity and the magnetic field in terms of spherical harmonic functions such
that [13]:

Vo= Y VXPOY0.6)7 + YV X V x sP(r) Y6, 6)F, (7)
ILm lLm
B = Y VXTn)Y™0.0)F + >V xVx SPr)Y0,¢)F.  (8)

tm Lm

The fields separate naturally into two components. The first series in each field
are labeled as toroidal components of the field. They can be identified with field
lines constrained to spherical surfaces of constant r, i.e. they are vector fields with
no radial component. They are specified by the scalar profile functions ¢J*(r) and
T;*(r). The second series are labeled as poloidal and are specified by the scalar
functions profile functions s7*(r) and S;*(r). These fields have a radial compo-
nent. In fact, the scalar functions themselves can be identified with the spherical
harmonic representation of the radial part of the vector field. For example, the
magnetic field is

4+ 1
Br09) = Y speyvie.e), ©
{m
N i R 7
Bo(r.0.9) = z;:r dr 96 rsind d¢ ' (10)
~ 1 dspayp TR oy
Bo(r.0.0) = erinG dr 09¢ r 08 ° (11)

Z,m
The absence of flow through the surface of the sphere, an assumed no-slip condi-
‘tion, and non-singularity at the origin imply
dsp
s = —£
dr
sgt=t' =0 at r=0.

=t;'=0 at r=a, and

On the surface of the sphere the magnetic field in the vessel must match a vacuum
solution of the magnetic field outside the sphere which requires

_ 450 | 657

" = =0 at r=a, and

dr r

T =5"=0 at r=0.
A natural consequence is that only poloidal magnetic fields will be gbservable
outside the sphere since the toroidal magnetic field is entirely contained within
the sphere.

The problem reduces to solving a coupled set of differential equations for the
radial profile functions T;*(r) and S*(r) given the profile functions t}*(r) and
s7*(r). This set is derived by substituting the spherical harmonic expansions into
(5). The orthogonality of the toroidal and poloidal fields allows the equation to be
split into two sets of coupled equations. Each equation describes the evolution of a
single magnetic mode in terms of the interaction of magnetic modes with velocity
modes:

825 0 (ty +1) Rm
81‘27 —/\S’y——'—'y :2 SW:_T—Q-ZtaSB—»S'Y_F
a8
+toTg — Sy +saTg — 5y + 553 = 5y, (12)
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The notation t,.53 — S, represents a velocity mode « operating on-magnetic
mode J to produce a third magnetic mode v. These mode interactions can be
computed as various integrals over spherical harmonics, and are shown below:

K, a8 034
5053 — 8y =~ va {uauasa-ér—ﬂ - l/g,ug—deSB} , (14)
L
taSp — Sy = ——2ETy5t, 55, (15)
AN!\(
L,
SQTB - S’y = - ki Vasa‘T,Bv (16)
Ny

L, 9 TR :
SaSg — T, = —ﬁ-l{ljasaj-ﬁ— <_”70Ai*ua5_a) 2_(2_:9_9. +
T

N, or? or r or
%5, 2034
G (”—arz - 73[) Sﬁ}’ ()

Ka a8 Ote 2t
taSp — Ty = Nm {[’/ﬁﬂﬁ + uwﬂ,]ta—‘d-f- + vats (5; - 7) Sﬂ} »
Y 18)

Kap 073 Jsa 284 084
salh = Th== " {”‘*“QSQW+[“‘*"“ (W‘T)*”WWJ Tﬂ}’

Ny (19)
L,
taTg — Ty = — N‘” vitaTs, (20)
i
talp — Sy =0. (21)

where vq = £o(be + 1), po = 1/2(vq — v — vy), and N, = 47w, /20, + 1. Koy
and Lyg- are products of the surface harmonics and are called the Adams-Gaunt
and Elsasser integrals respectively,

27 kS
Kopy = /0 /0 Y, YsY,df2,

2n T ; . s
oYz 0Y, 0Y, 0Yp
L = Yol =2 =21 - L2 1dQ
o /0 /0 ( 96 dp 09 99 )
The equations (14)-(21) is solved numerically by using discrete radial profiles

and finite differences for estimating the radial derivatives. The equations can be
written as an eigenvalue equation of the form:

Ab = )b (22)

where A is a banded diagonal matrix containing the advection and diffusion terms,
b is the magnetic eigenvector, and X is its corresponding eigenvalue. This system
is solved for the eigenvalue with the largest real component using the ARPACK++
library with the Implicit Restarted Arnoldi Method (IRAM).
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1.2. Optimized solutions. Three spherical axisymmetric flow topologies are
well-suited for experimental dynamos [9, 10]. Each is described by two profile func-
tions: tis1 [s(r),¢3(r)], t1s2 [s3(r), #}(r)]. and t2s2 [sY(r), t3(r)]. The original
study [10] uses profiles which satisfy a mixed set of boundary conditions, namely
s7"(0) = sy*(1) = 0 from non-singularity at the origin and zero outflow at the sur-
face of the sphere, and t;*(0) = ¢}*(1) = 0 from non-singularity at the origin and
no-slip conditions at the wall. The functions are trigonometric functions which
satisfy non-singularity conditions at the origin and no-outflow on the surface of
the sphere but do not satisfy no-slip conditions at the outer wall.

We have generalized these radial profile functions to more sophisticated forms

suitable for parammetric searches:

s(r) = asr2exp{ - 1—i—r - g - (L;ﬂﬂi}, (23)
Hry = ar exp{—lf, —;6-~(r;2n)~} (24)

These flow fields are parametrized by the mode numbers of the imposed flow,
the relative amplitude of the toroidal and poloidal flow through a; and as, the
position of the poloidal null 7., the position of peak toroidal rotation r¢, the shear
wt, ws, and the boundary layer width 4, Fig. 2. The magnitude of the velocity
field generated by a particular ratio a,/a, is normalized to a peak speed of unity.
The optimizations are performed by specifying the topology (choice of ¢ and m
functions for the velocity field), solving the eigenvalue problem, and then searching
for combinations of parameters which maximize the growth rate at a given Rm. A
simple search algorithm [14] is used to find the optimized solutions. Configurations
are found with performance up to 50% better than the Dudley and James flows
[10]. A lower Rm, is found for all three configurations, as shown in Table 1.

Table 1. Critical magnetic Reynolds numbers for the Dudley and James flows and also

for the optimized flows.

case | R R, Amp Shift Width Edge
D&J | Optimized | a; : a, Ty T Wy T Wy )
tisl 150 72 1:0.12 | 0.207:0.2 | 0.256:0.311 | 0.03
tls?2 95 67 1:0.07 | 0.36:0.31 | 0.31:0.385 | 0.054
t2s2 59 47 1:0.14 | 0.5:0.46 0.32:0.32 0.05
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Fig. 3. The magnetic eigenmode of the t2s2 dynamo. The left panel is a contour plot
of the radial component of the magnetic field on the surface of the sphere. From here it
is seen that the magnetic field peaks at the equator. The axis of symmetry for the flows
lies along the z-axis. The vacuuin field is almost entirely a dipole moment pginting out
at the equator. The right panel shows some magnetic field lines for the eigenmode which
enter the sphere along the dipole moment.

1.3. The t2s2 Dynamo. The optimization studies show that the t2s2 flow
is an attractive candidate for producing a dynaino in the laboratory since it has
the lowest Rm, and thus requires the least sodium and power for producing self-
excitation. Furthermore, as shown in the next section, impellers can produce the
flow (see Fig. 6 for an example of a t2s2 flow produced in the laboratory). The
flow consists of two counter-flowing vortices, one above and the other below the
equator. These vortices flow out along the poles of the axis of symmetry, flow in
at the equator. and have toroidal rotation in opposite directions.

The magnetic eigenmode found from analysis of the t2s2 flow is shown in
Fig. 3. The magnetic field is predominantly a dipole with its axis in the plane
of the equator: the poloidal mode with the largest magnetic energy is the Si
mode. There are, in addition, strong non-dipole components in the core region. In
particular, a toroidal component is seen which is in the plane perpendicular to the
dipole moment. It should be noted that the eigenvalue is purely real, indicating
that the dynamo is purely growing and non-oscillatory. The magnetic freld is not
axisymmetric and so the dvnamo is consistent with Cowling’s Theorem.

The mechanism for feedback and self-generation of the magnetic field can be
understood most easily by the stretch-twist-fold process. For a dynamo to exist
there must be a mechanism for amplification, or stretching, of field lines and there
must be a mechanism for positive feedback to occur. Fig. 4 shows the evolution
of a seed magnetic field line being distorted by the flows. Here the magnetic field

-evolution is determined in the limit of infinite Rm where the field lines are frozen

into the moving fluid. The first panel shows a magnetic field line corresponding
approximately to a dipole seed field perpendicular to the axis of symmetry of the
flow. A Lagrangian integration is used to determine the location of the field line
at later times as shown in panels (b)-(d). The upwelling of the vortex in the
central region stretches the field line upward, while toroidal rotation twists the
field around. The field is stretched and reinforces the original magnetic field as
seen in panel (d). The stretching (amplification) of the magnetic field is depicted in
the figure by the increasing separation of nearby points. In reality. finite resistivity
leads to reconnection of field lines in the central region where field lines in opposite
directions annihilate each other.
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Fig. 4. The time evolution
of a magnetic field line be-
ing distorted by a t2s2 flow.
The t2s2 flow consists of Aows
out at the poles (the flow axis
of symmetry is vertical) and
counter rotating toroidal flows
above and below the mid-
plane.

Results from the flow optimization studies show that growth rates are sensitive
to the ratio of toroidal to poloidal flow. This observation can now be understood
geometrically as a requirement that after one twisting, the large loop must come
back to the same azimuthal angle as the original dipole field. If the toroidal
rotation is too strong or too weak, the stretched magnetic field generates a field at
some other toroidal angle and the feedback is insufficient to produce self-excitation.

2. Water experiments. The optimized profiles found above serve as tar-
get velocity fields. There is no guarantee, however, that these flows can be easily
made in the laboratory. The problem is twofold. First, the inverse problem of find-
ing an impeller that can drive these flows is not easily solved in an experiment.
Second, the flows described above are laminar, stationary flows. In reality, flows
with Rm = 100 have a fluid Reynolds number of 107 and are strongly turbulent.
At the University of Wisconsin-Madison, flows are studied in a water prototype ex-
periment (shown in Fig. 5) dimensionally identical to a liquid sodium experiment.
Liquid sodium and water have nearly identical viscosities and mass densities and
thus the water experiment is hydrodynamically identical to an equivalent sodium

localized measurements
of vg (1.6) and v,,(r.8)

windows

/v
2d LDV traverse .

/

Fig. 5. Schematic of water version of the dynamo experiment. The vessel is a 670 kPa
pressure vessel, with two 38 kW motors driving counter rotating impellers. A Laser
Doppler Velocimeter (LDV) contains all of the coupling optics to make measurements in
the 6 and ¢ directions, and is moved by a traverse that allows measurements on an (r, 6)
grid.
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sensitive Fig. 6. (a) Photograph of Kért nozzle impellers inside sphere. (b) Contours of toroidal
derstood rotation and vector plot of poloidal flows measured in experiment. (c¢) LDV measured
ust come Vo {(d} LDV ineasured Vj ;. Uncertainties are just statistical spread in the measured
* toroidal values. (e) Fitted profile of s2(r) (with uncertainty bands) and optimum profile from
;ia field at numerical analysis. (f) Fitted profiles lor (2(r) and f4(r) (with uncertainty bands and
. optimuin profiles). These measurements correspond to P een & 20 kKW,
icitation, ‘
Je as tar-
,be easily experiment. So long as the magnetic field is small, the Lorentz force on the flow
a 9f find- is negligible and flows in the sodium experiment should correspond to flows in the
ieriment. water experiment?. The procedure used to evaluate cach impeller design involves
ty, flows ineasuring the mean velocity field produced by a particular impeller in the water
irbulent. experiment, fitting the measurements to a set of s7*(r) and t*(r) profiles, and de-
'ty. pe ex- termining the growth rate for the fastest growing eigenmode using the eigenvalue
fe?lr‘nent. code described above.
L;Zbdiig The vessel used in the water experiment is a 1 m diameter stainless steel

spherical shell with five viewing windows. The windows are designed to withstand
-pressures up to 670 kPa allowing additional pressure to be applied to prevent
cavitation at higher flow speeds. The windows provide a full » and 6 scan of
'r(;;ents the vessel. Flows generated in the experiment are measured using Laser Doppler
' Velocimetry (LDV). A computer controlled traverse, consisting of a radial scanning
stage coupled to a rotating armature positions the LDV optics as shown in Fig. 5.
Flows with t1s1 and t2s2 configurations are generated using the two independent
50 kW motors. The motors are coupled via belt drives to two stainless steel shafts
capable of rotation rates up to 1750 RPM. The shafts enter the machine on the
midplane through mechanical cartridge seals.
The design adopted for the t2s2 experiments uses two impellers of identical
helicity with Kort nozzles as shown in Fig. 6. The impellers spin in opposite
o directions and both produce thrust inward along the poles defined by the impeller
.. shafts. The Kort nozzles are cvlindrical rings welded to standard mixing impellers.
Impellers without Kort nozzles produce a strong radial jet off the impeller tips
£70 kPa and are more effective in producing a s9 velocity field than the desired sJ. The
A Laser Kart nozzles eliminate this component and lead to smooth s§ profiles. The toroidal
velocity is generated in the direction of the impeller rotation.

ments in
an (r,0)

2Sodium is a solid at room temperature, melts at 98°C, has a specific gravity of 0.97 (water
is 1.0), and viscosity of 0.68 cP at 100°C (identical to water at 60°C).

115




The flows are highly turbulent. The ratio Re/Rm = 105 for sodium and
so the hydrodynamic Reynolds number is of order 107. The Fig. 7 shows the
time history for one measurement location of the toroidal velocity. There is a full
frequency spectrum for the velocity fluctuations. Not only are there high frequency
fluctuations. but there are fluctuations on the resistive time scale of the (7, = 3 s),
as shown in Fig. 7. We have defined the mean velocity (indicated by V) to be the
average over many resistive times.

2.1. Streamline fitting. The spectral decomposition described above in
Eqgs (9)-(11) allows a velocity field to be completely described by a set of scalar
profiles for t7* and s7*. Assuming for now that we are only concerned with the
axisymmetric component of the velocity field, we can exclude all terms with m # 0
such that

N N o N -
Ve 8) =Y §g@& p(r,0) =S %%%, Vo(r0) = 3 —i—f%.‘ ,
e=1 =1 £=1 (25)
Rather than using spherical harmonics, only the Legendre polynomials Pg(cos8)
are needed.

The measurements are made at a set of discrete points r;,8;, i = 1, A where M
is the number of measurements made. This set of data can be inverted to find the
scalar profiles s(r) and t(r) which best fit the data. Functional forms are chosen for
s(r) and t(r) which satisty the boundary conditions s(0) = s(1) = ¢(0) = (1) =0
(such as the optimized radial profiles a = [a;, wy, 7] from Section 1.2). A cubic
spline interpolation is used in this analysis. A non-linear reduced x? minimization
is used to find profiles that best fit the data. Since the toroidal and poloidal basis
functions are orthogonal, the fits can be performed separately:

2 2
M — 1 ds,| dP M, _ te(bs) dP;
2 . (‘/9' ¢r dr la, df 2 2 Vd’t zf r df
Xia) =) — RAOEDD e *
i=1 0i i=1 i

where the radial profiles for each spectral mode £ are parameterized by the vectors
a; and by. The Vp 4; and g ¢; represent the measured velocity and its uncertainty
due to fluctuations. The minimization procedure used is a Levenberg-Marquart
technique which searches the n-dimensional parameter space defined by the num-
ber of elements in a until ¥y has been minimized. A typical best fit is shown in
Fig. 6. Most flows can be described remarkably well by 4-6 modes and a total of
about 20 parameters. The tolerance on the fit itself is large since the flows are
quite turbulent. The resulting radial profiles are the mean flow patterns averaged
over many eddy turnover times. These profiles are used as input in the ¢igenvalue
code in order to determine the R, of the flow.

Fig. 7. Time history of Vg
measured by LDV. The smooth
curve is a running average with
a time window equal to the re-
sistive time scale of a similar
sodium experiment.
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Fig. 8. Numerical extrapolation to full power in the sodium experiment determined

from power scan. The growth/damping rate is predicted from the MHD eigenmode code

using measured profiles. Positive growth corresponds to dynamo action.

2.2. Extrapolation the to sodium experiment. Extrapolating results from the
water experiment to the sodium experiment requires several-assumptions. First,
we assume that the flows will be identical in the sodium experiment. The water ex-
periments are performed over a temperature range 40°C to 60°C, to approximately
match the kinematic viscosities (and therefore Re) of sodium at 120°C. Using the
measured velocity fields, we then compute the growth rate using the eigenmode
code described above. We assune that the flows can be extrapolated to higher Rm
than is presently accessible in the water experiment which means we assume the
mean velocity field will be unchanged in shape as power is increased. The mechan-
ical input power in the water experiment is currently limited to 30 kW, although in
the future this will be increased to 75 kW. An additional limitation is that cooling
of the water experiment is limited to 20 kW. Consequently, temperature excur-
sions become large at higher powers. Finally, we have ignored turbulence effects
and assuined the measured mean quantities are sufficient for this extrapolation.

The growth rates for the least damped magnetic eigenmode for the flow pro-
files from Fig. 6 are extrapolated to higher power and are shown in Fig. 8. Flows
corresponding to Rm = 70 are measured which, when scaled to Rm = 100, give
positive growth rates and are therefore predicted to be dynamos. Note that the
definition of Rm for these experiments is based upon the peak of the mean ve-
locity field, not the speed of the impeller tip, or velocity excursions about the
mean. Defining Rm based upon the impeller tip would give approximately 3 times
the Rm used here (as seen in Fig. 8), but would not be appropriate definition for
comparing with the eigenmode calculations.

Perhaps the most troubling assumption is the neglect of turbulence. It may
be that the assumption of a static mean flow profile is not applicable. The growth
rates of the eigenmodes are sensitive to the details of the flow profiles, and so
positive growth may only be observed a fraction of the time. It is also possible that
short time-scale (possibly small spatial-scale) fluctuations will affect the growth
rate by contributing to an enhanced resistivity such as that produced by a 3-effect.
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Fig. 9. The Madison Dynamo experiment. This facility handles 300 gallons of liquid
sodium and more than 150 kW of mechanical energy for.driving flows of order of 10 m/s
in a 1 m diameter sphere filled with liquid sodium.

3. Description of the dynamo experiment. The water experiment and
the numerical modeling provide confidence that a spherical sodium experiment
with a radius of a = 0.5 m, approximately 150 kW of power, and peak mean
speeds of = 20 m/s is capable of producing a growing magnetic eigenmode. Sodium
has Rm = 47a[m]V[m/s], hence an experiment of this scale should be capable of
achieving Rim > 100. The Madison Dynamo Experiment, in its final stages of
construction, is shown in Fig. 9.

At the heart of the experiment is a spherical pressure vessel constructed by
Ability Engineering rated for pressures up to 700 kPa with two large (40.6 cm
diameter) ports for insertion of the impeller assembly. The vessel is constructed
of 1.6 ¢m thick 304L stainless steel. The shell penetration time for the stainless
steel is less than 1 ms, compared to the 3 s resistive time for the sodium. The two
flanges use spiral-wound Flexitallic gaskets. In addition, eight 5 cm Grayloc ports
are placed around the sphere for insertion of probes, and for attaching transfer
pipes to the sodium holding tank and the expansion tank.

Two 75 kW three-phase motors drive the impellers and are speed controlled
by independent variable frequency drives.

Dynamic imbalance, cavitation and back-reaction are forces that can drive
mechanical vibrations in the system. These vibrations are addressed in a num-
ber of ways. First, the sphere and motors are firmly mounted on an isolated 50
ton concrete foundation and the impellers and drive shafts are dynamically bal-
anced prior to assembly. The vessel is pressurized with an inert gas to reduce the
vibration due to cavitation.
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The seals are double mechanical cartridge seals using alpha-silicon carbide
seal faces and metallic bellows. Hot oil is used as a buffer, coolant, and lubricant
for the seals and is maintained at 240 kPa above the pressure of the experimental
vessel. The seals have external heating and cooling circuits to maintain the seal
temperature within the specified temperature range of 125-150°C.

The sodium is stored in a 1136 | reservoir placed below ground level in a
steel lined vault. Sodium is pneumatically conveyed from the holding tank to
the sphere. In addition, there is an expansion tank to accommodate the thermal
expansion of the sodium. Two heating techniques are used. First, 60 kW of
resistive heating elements are used to heat the bulk of the sodium, in the sphere,
holding tank, expansion tank, and transfer lines. The temperature is monitored
by a network of thermocouples. Software and hardware feedback loops control the
power to the heating elements. The second technique uses an oil based heating
and cooling system for controlling the temperature of the sphere. Initially, hot
oil is driven through surface-mounted heat exchange tubes to bring the sphere
to temperature. While the motors are running, the mechanical heating of the
sodiuin due to viscous dissipation of the flows gives sufficient heating (equal to the
mechanical input power). This represents up to 150 kW of heat which must be
removed to keep the experiment at constant temperature. The conductivity is a
strongly decreasing function of temperature, dropping by roughly a factor of two
due to a temperature increase of 100°C. Presently, 35 kW of cooling are available.

The diagnostics and magnetic field subsystems include axial magnetic field
‘ coils which can presently apply a 120 G field along the axis of rotation. Two 20
of liquid turn, 165 cm diameter coils are mounted coaxially with the experiment. These
«f 10 m/s coils will be used for magnetizing the sodium via a strong toroidal magnetic field

produced by differential rotation (the so called w-effect) and for turn-off experi-

ments. An array of 64 Hall probes (Analog Devices chip AD22151) are located on
ient and the surface of the sphere and measure the poloidal field. Magnetic mode numbers
ieriment are resolved up to £ =4 and m = 4.

'k mean The facility is designed to be operated remotely from a control réom. The

Sodium entire experimental area is monitored with arrays of leak detectors, thermocouples,

sable of level indicators and hydrogen detectors. A 4000 CFM scrubber system isolates

sages of the facility from the outside environment by dissolving any products of sodium

oxidation in a water loop.

cted by The sodium experiment will test the validity of the kinematic dynamo model

10.6 cm used in numerical modeling of the water experiment. Measurements of the mag-

tructed netic field will be used to learn whether the stretch-twist-fold mechanism accu-

ftainless rately describes the t2s2 dynamo. The experiment will also allow us to establish

“he two the importance of effects such as turbulence and back-reaction in a realistic model

1 ports of the dynamo.
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